Computer Graphics

Introduction

Prof. SHENG Bin, CS, SJTU

Outline

Course information

▶ What is computer graphics?

▶ Computer graphics applications and related research areas

Course information

Instructor: Dr. SHENG Bin

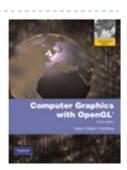
Tel.: 15026790946

Email:shengbin@cs.sjtu.edu.cn

Office: SEIEE-3-511

Lecture TA:

Anum Masood anummasood@sjtu.edu.cn

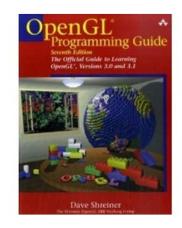

Course information

- Course webpage: http://www.cs.sjtu.edu.cn/~shengbin/course/cg/home.html
- Pre-requisites
 - A basic familiarity with analytic geometry, calculus, linear algebra
 - ▶ A programming ability on C/C++ programming

Textbook & references

Textbook

- D. Hearn, M.P. Baker, and W. R. Carithers.
 Computer Graphics with OpenGL, 4th edition, Pearson Education, 2011.
- Complementary materials (Papers, books, etc.)



References

- OpenGL Programming Guide: The Official Guide to Learning OpenGL Version 3.0 and 3.1, 7th Edition, 2009. [OpenGL 4.3, 8th Edition, 2013] http://www.glprogramming.com/red/
- OpenGL Reference Manual: The Official Reference Manual to OpenGL Version 1.4, 4th Edition, 2004. http://www.glprogramming.com/blue/
- OpenGL Shading Language, 3rd edition. Addison Wesley, 2010. (OpenGL3.1, GLSL1.4)
- Graphics Shaders: Theory and Practice, by Mike Bailey etc. A K Peters, 2nd, Oct. 2011.
- OpenGL SuperBible, 4th edition. Addison Wesley, 2007. (OpenGL2.1) [6th edition, 2013. (OpenGL4.3)]
- Ray Tracing from the Ground Up, by Kevin suffern. A K Perter, 2007.
- Game Physics, by David H. Eberly, 2nd edition. Morgan Kaufmann, 2010.

Textbook & references

- ▶ Edition of OpenGL Programming Guide
 - The latest
 - \triangleright 8th Edition, 2013 -> OpenGL Version 4.3
 - ▶ The previous
 - \triangleright 7th Edition, 2009 -> OpenGL Version 3.0 and 3.1
 - ▶ 6th Edition -> OpenGL Version 2.1
 - ▶ 5^{th} Edition -> OpenGL Version 1.5 and 2.0
 - ▶ 4^{th} Edition -> OpenGL Version 1.3 and 1.4
 - ▶ 3rd Edition -> OpenGL Version 1.2
 - ▶ 1^{st} , 2^{nd} Edition -> OpenGL Version 1.1

The latest version currently: OpenGL4.4, released on July 22, 2013.

http://www.opengl.org/documentation/current_version/

Grading policy

Course Projects: 70%

Mid-term evaluation: 20%

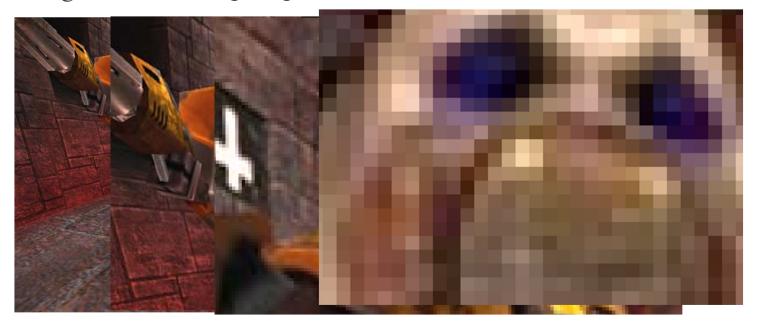
Final Exam: 50%

Assignments: 30

No late assignment and programming practice is accepted usually

Main topics

- ▶ Graphics hardware & software
- Graphics theories & algorithms
 - Graphics primitives, modeling and viewing transformation, clipping, lighting and illumination / shading
- Graphics programming in OpenGL/GLUT
- ▶ Interactive input methods & CG User Interface
- Advanced topics* (chosen from the following topics)
 - Physically based simulation
 - Advanced techniques directed to real-time rendering
 - Computer Graphics in Virtual Reality and Augmented Reality
 - Paper discussion
- It is not a course about graphic design, using graphics tools like PhotoShop or Maya

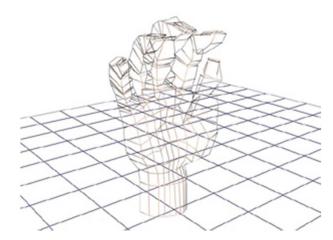

How to learn

- ▶ Reading the books and complementary material is necessary
- ▶ Reading more references and papers is encouraged
- Learning by doing
- Practice!!
 - Try it and see!"
 - Writing programs to test various concepts and techniques

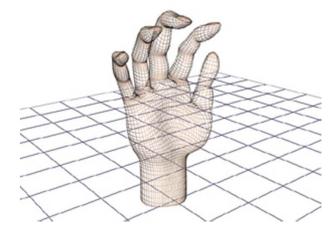
Computer Graphics Introduction

Computer Graphics

- Coined in 1960 by William Fetter, a graphic designer for Boeing.
- Business of generating images: Computer-Generated Images
- Images are made up of pixels.



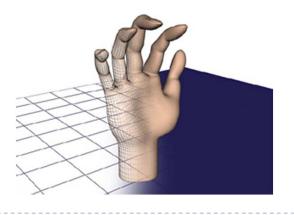
Computers depict the world by putting pixels on 2D screen



- ▶ How to make it look like the 3D thing on 2D screen?
 - Shape
 - Surface information
 - Lighting
 - Perspective

- ▶ How to make it look like the real 3D thing on 2D screen?
 - ▶ **Shapes**: straight lines, triangle, squares, circles, ...
 - ▶ Small shapes to be put together into a structure, called wireframe

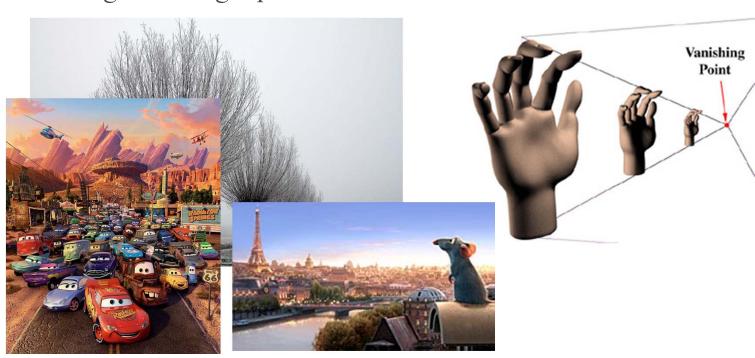
The wireframe of a hand made from relatively few polygons -- 862 total.



More natural and rounded, but many more polygons -- 3,444.

- How to make it look like the real 3D thing on 2D screen?

 (cont.)
 - Surface information
 - Color: what color is it? Is it the same color all over?
 - ▶ Texture(纹理/质地): Does it appear to be smooth, or any irregularity on the surface?
 - ▶ Reflectance(反射): How much light does it reflect? Sharp or fuzzy?


Adding a surface to the wireframe begins to change the image from something obviously unreal to a picture we might recognize as a hand.

- How to make it look like the real 3D thing on 2D screen? (cont.)
 - Lighting: play a key role in two effects
 - Shading: when a light shining on an object is stronger on one side than on the other. Illusion of depth, height and width.
 - ▶ <u>Shadows</u>: illusion of weight of 3D objects

Lighting in an image not only adds depth to the object through shading, it "anchors" objects to the ground with shadows.

- How to make it look like the real 3D thing on 2D screen?
 (cont.)
 - Perspective (透視): the objects in a scene look like they eventually converge at a single point in the distance.

Computer Graphics

• Generate 2D images of a 3D world scene represented in a computer.

Main tasks

- Modeling: (shape) creating and representing the geometry of objects in the 3D world
- Rendering: (light, perspective) generating 2D images of the objects
- Animation: (movement) describing how objects change in time

Computer Graphics Applications and Related Research Areas

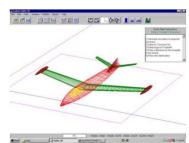
Early applications of computer graphics

Data Visualization

- Graphs and charts
 - b line/surface graphs,
 bar/pie charts, ...
 - For summarize financial, statistical, economic...data for reports.

(From: http://www.dotnetgoodies.com/ and http://shipanalysis.com)

Early applications of computer graphics


- Computer Aided Design (CAD)
 - ▶ CAD/CADD (Computer Aided Drafting & Design)
 - CAM (Computer Aided Manufacturing)
 - Semiconductor (IC, LSI, VLSI) Product Design
- Used in the design of buildings, automobiles, aircraft, watercraft, spacecraft, computers, ... etc.
 - Better way to transfer of design ideas
 Ohio State Univ. Section 10: CAD/CAM/CADD/CAE

http://design.osu.edu/carlson/history/lesson I 0.html

Early applications of computer graphics

Computer Aided Design (CAD)

Case: Boeing 777, based CAD system: CATIA (Computer-Aided Three-dimensional Interactive Application)

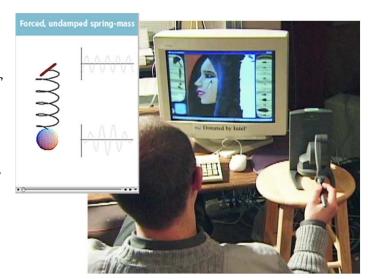
"100% digitally designed using 3D solids technology"

- Boeing reaped huge benefits from design automation
 - Elimination of > 3000 assembly interfaces, without any physical prototyping
 - 90% reduction in engineering change requests (6000 to 600)
 - 90% reduction in material rework
 -

- ▶ VR (Virtual Reality) Environments
 - VR: User interacts and views with a 3D world using "more natural" means

Ohio State Univ. - Section 17:Virtual Reality http://design.osu.edu/carlson/history/lesson17.html

Multi-projector VR system used for training at the Nellis Air Force Base in Nevada. (From:


http://www.gizmodo.com.au/2007/10/military_
vr_simulator_is_close/)

Video:

MilitaryVR-5Channels
MilitaryVR-4Projector

Education and Training

- Graphics are used to generate models of physics, financial, political, social, economic, and other as educational aids.
- Computer Aided Instruction (CAI)
- Examples: flight simulators, ships simulators, heavy-equipment operators.
- flight-simulator
- simulator-intro

- Augmented Reality
 - ▶ Combine the virtual and the real world together.
- ▶ Three features
 - Combines real and virtual
 - Interactive in real time
 - Registered in 3D

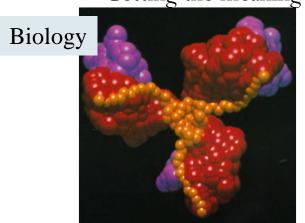
Fig. 1. A typical "backpack" setup (left) for Mobile AR versus a lightweight handheld

Head-Mounted Display

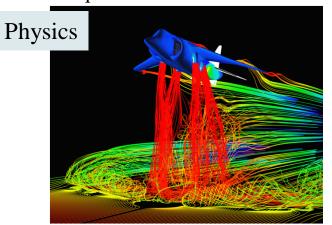
Smart Phone

(From: Towards Massively Multi-User Augmented Reality on Handheld Devices)

Argon: the Augmented Reality Web Browser, by Georgia Tech.


Data Visualizations

Scientific Visualization: to graphically represent scientific, engineering, or medical data, and to analysis the data


Visualizing millions to billions of data points

▶ Exploring results from numerical analysis

▶ Getting the meaning from complex data sets

Frame from Nelson Max DNA visualization

Medicine

The Visible Human Project

Airflow around a Harrier Jet (NASA Ames)

Computer Art

▶ Electronic Cartoon, Watercolor/Oil Painting, Fine Arts

Lillian Schwartz: After Picasso

CGI Characters by Ryan Kittleson

watercolor illustrations (graphics.uni-konstanz.de)

Evolution of 3D graphics in video games (1984-2008)

History of CGI in movie (1973-2007)

Entertainment

Music Video (MTV), Television Show, Movie and Game

Pixar: Monster's Inc.

1999: The Matrix

1995: Toy Story, 1st full CG feature film

Final Fantasy (Square, USA)

2003: The Lord of the Rings - Gollum

Animators can use CG techniques to animate almost anything now in a movie!

2009: Avatar

How can all of these implemented into a rich 3D, CG scene?

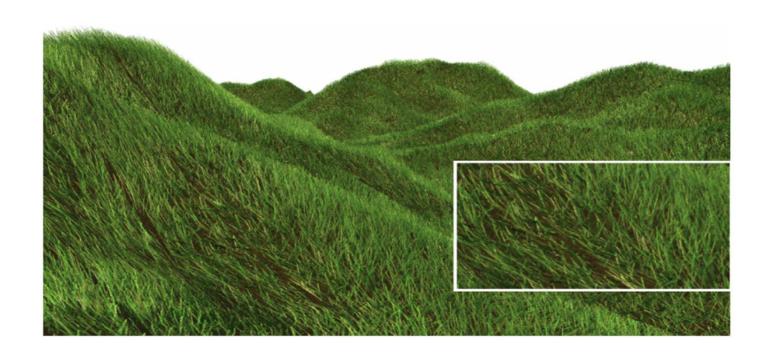
- Motion-capture
 - The actor/actress is dressed in a special suit;
 - A set of video cameras records from different places;
 - Motion data is input into the computeras the movements for the virtual character

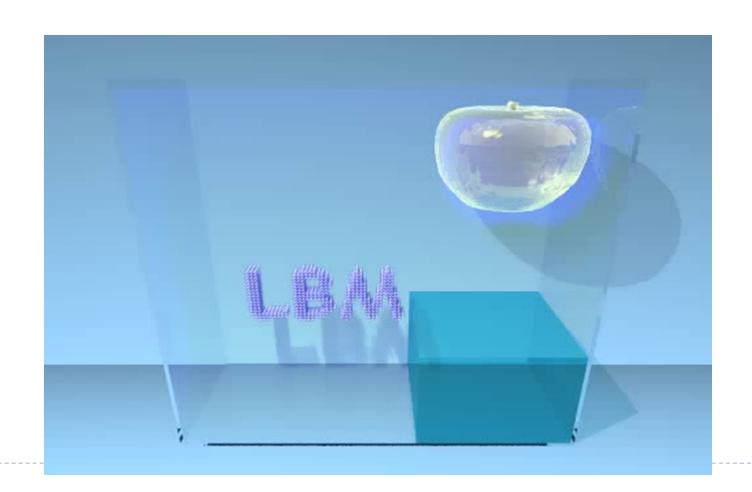
A annual conference on computer graphics convened by ACM SIGGRAPH organization from 1974.

http://s2013.siggraph.org/

- ▶ Technical papers session: the novel and high-quality research
- ▶ Computer Animation Festival: recently created CG films are played
- Courses, talks, panels and posters
- Sessions for arts: art gallery, art papers and studio
- Exhibition: companies in the engineering, graphics, motion picture...
- ▶ SIGGRAPH AISA, Euro Graphics, Pacific Graphics, SCA (Symposium on Computer Animation) ...
- CG-related Journals
 - ▶ ACMTOG, IEEETVCG, IEEE CG&A, CGF, TVC, CAVW, ...

- ▶ Topics (cont.)
 - Rendering
 - Computer animation

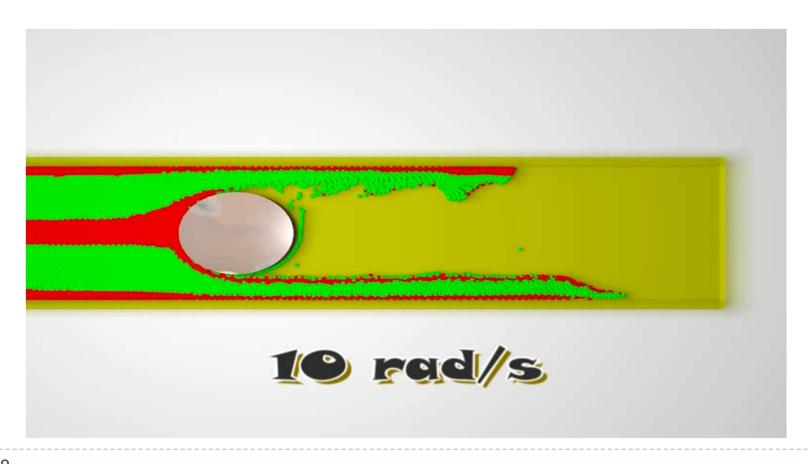



- ▶ Topics (cont.)
 - Modeling and Rendering of large scale natural models

- ▶ Topics (cont.)
 - Time varying simulation of natural grassland

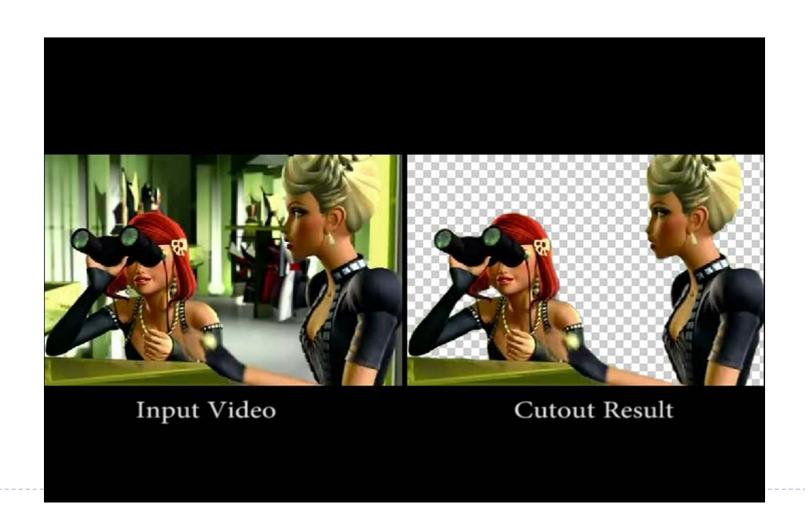
▶ Topics (cont.) : Physically Based Modeling and Rendering (1)

- ▶ Topics (cont.)
 - ▶ Physically Based Modeling and Rendering (2)


▶ Topics (cont.):Physically Based Modeling and Rendering (3)

<u>Videos_Wu\monroe1.mpg</u> (PG2005)

▶ Topics (cont.): Physically Based Modeling and Rendering (3)


▶ Topics (cont.): Physically Based Modeling and Rendering (3)

▶ Topics (cont.): Filming Effects

▶ Topics (cont.): Video Layers Resconstruction (segmentation)

▶ Topics (cont.): Augmented Reality

End